5 research outputs found

    FPGA Acceleration of 3GPP Channel Model Emulator for 5G New Radio

    Get PDF
    The channel model is by far the most computing intensive part of the link level simulations of multiple-input and multiple-output (MIMO) fifth-generation new radio (5G NR) communication systems. Simulation effort further increases when using more realistic geometry-based channel models, such as the three-dimensional spatial channel model (3D-SCM). Channel emulation is used for functional and performance verification of such models in the network planning phase. These models use multiple finite impulse response (FIR) filters and have a very high degree of parallelism which can be exploited for accelerated execution on Field Programmable Gate Array (FPGA) and Graphics Processing Unit (GPU) platforms. This paper proposes an efficient re-configurable implementation of the 3rd generation partnership project (3GPP) 3D-SCM on FPGAs using a design flow based on high-level synthesis (HLS). It studies the effect of various HLS optimization techniques on the total latency and hardware resource utilization on Xilinx Alveo U280 and Intel Arria 10GX 1150 high-performance FPGAs, using in both cases the commercial HLS tools of the producer. The channel model accuracy is preserved using double precision floating point arithmetic. This work analyzes in detail the effort to target the FPGA platforms using HLS tools, both in terms of common parallelization effort (shared by both FPGAs), and in terms of platform-specific effort, different for Xilinx and Intel FPGAs. Compared to the baseline general-purpose central processing unit (CPU) implementation, the achieved speedups are 65X and 95X using the Xilinx UltraScale+ and Intel Arria FPGA platform respectively, when using a Double Data Rate (DDR) memory interface. The FPGA-based designs also achieved ~3X better performance compared to a similar technology node NVIDIA GeForce GTX 1070 GPU, while consuming ~4X less energy. The FPGA implementation speedup improves up to 173X over the CPU baseline when using the Xilinx UltraRAM (URAM) and High-Bandwidth Memory (HBM) resources, also achieving 6X lower latency and 12X lower energy consumption than the GPU implementation

    Edge-based Collision Avoidance for Vehicles and Vulnerable Users

    Get PDF
    Collision avoidance is one of the most promising applications for vehicular networks, dramatically improving the safety of the vehicles that support it. In this paper, we investigate how it can be extended to benefit vulnerable users, e.g., pedestrians and bicycles, equipped with a smartphone. We argue that, owing to the reduced capabilities of smartphones compared to vehicular on-board units, traditional distributed approaches are not viable, and that multi-access edge computing (MEC) support is needed. Thus, we propose a MEC-based collision avoidance system, discussing its architecture and evaluating its performance. We find that, thanks to MEC, we are able to extend the protection of collision avoidance, traditionally thought for vehicles, to vulnerable users without impacting its effectiveness or latency

    Psychological treatments and psychotherapies in the neurorehabilitation of pain. Evidences and recommendations from the italian consensus conference on pain in neurorehabilitation

    Get PDF
    BACKGROUND: It is increasingly recognized that treating pain is crucial for effective care within neurological rehabilitation in the setting of the neurological rehabilitation. The Italian Consensus Conference on Pain in Neurorehabilitation was constituted with the purpose identifying best practices for us in this context. Along with drug therapies and physical interventions, psychological treatments have been proven to be some of the most valuable tools that can be used within a multidisciplinary approach for fostering a reduction in pain intensity. However, there is a need to elucidate what forms of psychotherapy could be effectively matched with the specific pathologies that are typically addressed by neurorehabilitation teams. OBJECTIVES: To extensively assess the available evidence which supports the use of psychological therapies for pain reduction in neurological diseases. METHODS: A systematic review of the studies evaluating the effect of psychotherapies on pain intensity in neurological disorders was performed through an electronic search using PUBMED, EMBASE, and the Cochrane Database of Systematic Reviews. Based on the level of evidence of the included studies, recommendations were outlined separately for the different conditions. RESULTS: The literature search yielded 2352 results and the final database included 400 articles. The overall strength of the recommendations was medium/low. The different forms of psychological interventions, including Cognitive-Behavioral Therapy, cognitive or behavioral techniques, Mindfulness, hypnosis, Acceptance and Commitment Therapy (ACT), Brief Interpersonal Therapy, virtual reality interventions, various forms of biofeedback and mirror therapy were found to be effective for pain reduction in pathologies such as musculoskeletal pain, fibromyalgia, Complex Regional Pain Syndrome, Central Post-Stroke pain, Phantom Limb Pain, pain secondary to Spinal Cord Injury, multiple sclerosis and other debilitating syndromes, diabetic neuropathy, Medically Unexplained Symptoms, migraine and headache. CONCLUSIONS: Psychological interventions and psychotherapies are safe and effective treatments that can be used within an integrated approach for patients undergoing neurological rehabilitation for pain. The different interventions can be specifically selected depending on the disease being treated. A table of evidence and recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation is also provided in the final part of the pape

    What is the role of the placebo effect for pain relief in neurorehabilitation? Clinical implications from the Italian consensus conference on pain in neurorehabilitation

    Get PDF
    Background: It is increasingly acknowledged that the outcomes of medical treatments are influenced by the context of the clinical encounter through the mechanisms of the placebo effect. The phenomenon of placebo analgesia might be exploited to maximize the efficacy of neurorehabilitation treatments. Since its intensity varies across neurological disorders, the Italian Consensus Conference on Pain in Neurorehabilitation (ICCP) summarized the studies on this field to provide guidance on its use. Methods: A review of the existing reviews and meta-analyses was performed to assess the magnitude of the placebo effect in disorders that may undergo neurorehabilitation treatment. The search was performed on Pubmed using placebo, pain, and the names of neurological disorders as keywords. Methodological quality was assessed using a pre-existing checklist. Data about the magnitude of the placebo effect were extracted from the included reviews and were commented in a narrative form. Results: 11 articles were included in this review. Placebo treatments showed weak effects in central neuropathic pain (pain reduction from 0.44 to 0.66 on a 0-10 scale) and moderate effects in postherpetic neuralgia (1.16), in diabetic peripheral neuropathy (1.45), and in pain associated to HIV (1.82). Moderate effects were also found on pain due to fibromyalgia and migraine; only weak short-term effects were found in complex regional pain syndrome. Confounding variables might have influenced these results. Clinical implications: These estimates should be interpreted with caution, but underscore that the placebo effect can be exploited in neurorehabilitation programs. It is not necessary to conceal its use from the patient. Knowledge of placebo mechanisms can be used to shape the doctor-patient relationship, to reduce the use of analgesic drugs and to train the patient to become an active agent of the therapy
    corecore